A blood pressure meter, or sphygmomanometer, is a device that is used to measure blood pressure. The meter is used with an inflatable cuff for restricting blood flow and a pump to inflate the cuff. Digital blood pressure meters typically measure both systolic and diastolic pressures by an oscillometric detection method, using a piezoelectric pressure sensor.
A digital blood pressure meter allows easy monitoring of blood pressure at home, in a doctor’s office or in a hospital. Today’s blood pressure meters must meet the demands of measuring, storing and transmitting blood pressure, pulse and other medical data. To meet these demands, we offer a broad portfolio of hardware, software and development tools to build your product as well as demonstration design files to speed up your design’s time to market.
Check out the design files for a low-cost, low-power, fully-integrated blood pressure meter demo.
The PIC24FJ128GC010 powers a blood pressure meter demonstration that utilizes the integrated Intelligent Analog.
Title
|
|
---|---|
ULP Connected Wearable Activity Monitor | Download |
AN951 - Amplifying High-Impedence Sensors Photodiode Example | Download |
AN1906 - Bluetooth Low Energy Digital Pedometer Demo Design | Download |
AN1661 - Sensor Calibration on SSC7102 Bosch Sensor Fusion Solution for Windows 8 | Download |
AN1525 - Pulse Oximeter Design Using Microchip's Analog Devices and dsPIC Digital Signal Controllers (DSCs) | Download |
AN1494 - Using MCP6491 Op Amps for Photodetection Applications | Download |
AN1260 - Li-Ion/Li-Poly Battery Charge and System Load Sharing Management Design Guide With MCP73871 | Download |
AN1416 - Low-Power Design Guide | Download |
TB1098 - Low-Power Techniques for LCD Applications | Download |
ATULPC-DEMO User Guide | Download |
AN990 - Analog Sensor Conditioning Circuits - An Overview | Download |
As medical remote patient monitoring becomes more important, the need for wearable ECG capability has become critical. Microchip’s Connected, Wearable ECG Demonstration Board can be used in the design of advanced fitness tracking devices and can also be designed into medical wearable remote patient monitoring and diagnostic systems.
High-end wearable activity trackers can take step count, temperature, light and other movement and environment measurements. They are not only being used for fitness applications but are becoming an essential part of medical device design. Microchip’s Ultra Low-Power or ULP Connected, Wearable Activity Monitor Demonstration Board can be used as the starting point for the design of medical home monitoring, patient tracking and drug delivery compliance devices.
For more information, please visit:
https://www.microchip.com/en-us/solutions/medical
Microchip’s wearable Bluetooth Low Energy pedometer reference design demo helps designers develop a low-cost, low-power, wearable pedometer with both an on-board LED display as well as Bluetooth Low Energy capability to connect to smartphones and tablets. This demo board can be used as a basic wearable step count activity tracker design, but it can also be used as a development platform for the design of more advanced activity tracker functions such as distance traveled or calories burned. Also, additional biometric measurement capability can be added using other Microchip medical reference demo designs. http://www.microchip.com/medical
Microchip's Connected Thermometer Board demonstrates the implementation of a Bluetooth®-connected digital thermometer using Microchip's PIC16F1519 MCU and RN42 Bluetooth Module. The PIC16F1519 MCU is an eXtreme Low Power (XLP), cost-effective 8-bit microcontroller with an integrated capacitive touch sensing module. Connectivity is demonstrated on this board by the use of Microchip's fully qualified RN42 Bluetooth2.1 + EDR Module. This demo design can also be easily implemented using any of Microchip's Bluetooth Low Energy or Wi-Fi® connectivity modules.
Microchip’s Connected Weight Scale Demonstration Board shows the implementation of a Bluetooth®-connected weight scale using Microchip’s PIC16F1783 MCU and the RN42 Bluetooth module. The PIC16F1783 MCU is an eXtreme Low Power (XLP), cost-effective 8-bit microcontroller with an integrated capacitive touch sensing module, 12-bit ADC and operational amplifiers. Connectivity is demonstrated on this board by the use of Microchip’s fully qualified RN42 Bluetooth 2.1 + EDR module. This demo design can also be easily implemented using any of Microchip’s Bluetooth Low Energy or Wi-Fi® connectivity modules.
Microchip’s pulse oximeter reference design demo board helps designers develop a low-cost, low power handheld or wearable pulse oximeter with user interface which is capable of measuring both heart rate and blood oxygen level. It can be used to start development of a hospital or clinical pulse oximeter design, but it can also be used as a starting point for the development of a wearable activity tracker design that can measure heart rate and blood oxygen level. http://www.microchip.com/medical
See how Microchip's products can enable the development of innovative medical and fitness solutions.
More information: https://www.microchip.com/en-us/solutions/medical
Get an overview of some of Microchip's solutions for designing the latest medical devices.
More information: https://www.microchip.com/en-us/solutions/medical
Microchip Intelligent Analog PIC MCUs offer on chip analog building blocks with flexible connections to optimize integration, simplify design, and minimize cost.
The PIC24F “GC” family integrates advanced analog features like 16-bit ADC, 12-bit 10 Msps ADC, Dual DAC, Dual OpAmps along with Low Power, USB and LCD. This integration creates and MCU perfect for portable medical and industrial applications.
The PIC24FJ128GC010 powers a blood pressure meter demonstration that utilizes the integrated Intelligent Analog.
This video features a number of medical demos, as well as some innovative new products from Microchip customers.
Whether healthcare is administered in the hospital, clinic or in the home; safe automated syringe pumps and auto injectors have become a critical part of drug delivery. Microchip's Functional Safety Syringe Pump/Auto Injector demo is a great example of the implementation of a medical, safety-critical application. This demonstration highlights the use of Microchip's Class B Functional Safety Software Libraries and our IEC-62304 compliant Functional Safety Compilers. The demo itself not only shows how to design the motor control and sensor interface for an automatic syringe pump or auto injector device, it also demonstrates how to implement connected, patient compliance functions in a drug delivery system.